

## Baryon diffusion in heavy-ion collisions

Akihiko Monnai (RIKEN BNL Research Center)
In collaboration with: Björn Schenke (BNL)
G. Denicol, C. Shen, S. Jeon and C. Gale (McGill)

#### **RIKEN BNL Center Workshop**

"Theory and Modeling for the Beam Energy Scan: from Exploration to Discovery"

27<sup>th</sup> February 2015, BNL, NY, USA

#### Overview

- Introduction
  - Collectivity in the era of beam energy scans
- 2. Dissipative hydrodynamics

AM, Phys. Rev. C 86, 014908 (2012)

- Finite-density transport phenomena
- Numerical analyses: Effects on baryon stopping
- 3. Towards full analyses of BES
  - (3+1)-D event-by-event analyses
- 4. Summary and outlook

B. Schenke and AM, in preparation

To collaborate with G. Denicol, C. Shen, S. Jeon and C. Gale (McGill)

Next slide:

### Introduction

Beam energy scans: exploration of QCD phase diagram in heavy-ion collisions

Big goals:



- Explicate the QGP properties at finite  $\mu_{\text{B}}$
- Search for a QCD critical point



Next slide:

Hydrodynamic approaches

 $\mu_{\mathsf{B}}$ 

The QGP at high energy is quantified as a relativistic fluid (2000)



We consider dissipative hydrodynamics at finite densities

## Introduction

Is hydrodynamics applicable?



- Differential v<sub>2</sub> is large
- Integrated v<sub>2</sub> stays positive above  $\sqrt{s_{NN}} \sim 3 \text{ GeV}$  but is small





We will see, with off-equilibrium corrections, finite-density effects, state-of-art initial conditions and EoS

## Introduction

Schematic pictures of collision geometries

At high-energies



Net baryon at forward rapidity

At low-energies



Net baryon at mid-rapidity

#### Finite-density hydro is relevant in

- Particle identification analyses (p/ $\overline{p}$  ratio, etc.)
- Quantification of transport properties
- Bulk evolution for low energy collisions?

### 2. Dissipative hydrodynamics

Reference: AM, Phys. Rev. C 86, 014908 (2012)

# Relativistic hydrodynamics

Local thermalization; macroscopic variables are defined as fields



Flow 
$$u^{\mu}(x)$$
  $u^{\mu}u_{\mu}=1$ 

Temperature T(x)

Chemical potentials  $\mu_J(x)$ 



Gradient in the fields: thermodynamic force

Response to the gradients: transport coefficients (= 0 if ideal hydro)

Energy-momentum tensor & conserved current are

$$T^{\mu\nu} = (e_0 + \delta e)u^{\mu}u^{\nu} - (P_0 + \Pi)\Delta^{\mu\nu} + 2W^{(\mu}u^{\nu)} + \pi^{\mu\nu}$$
$$N_J^{\mu} = (n_{J0} + \delta n_J)u^{\mu} + V_J^{\mu}$$

when decomposed with  $u^{\mu}$ ;  $\Delta^{\mu\nu}=g^{\mu\nu}-u^{\mu}u^{\nu}$ 

# Thermodynamic quantities

In local rest frame  $u^{\mu}=(1,0,0,0)$ 

$$T^{\mu\nu} = T_0^{\mu\nu} + \delta T^{\mu\nu}$$

$$= \begin{pmatrix} e_0 & 0 & 0 & 0 \\ 0 & P_0 & 0 & 0 \\ 0 & 0 & P_0 & 0 \\ 0 & 0 & 0 & P_0 \end{pmatrix} + \begin{pmatrix} \delta e & W^x & W^y & W^z \\ W^x & \Pi + \pi^{xx} & \pi^{xy} & \pi^{xz} \\ W^y & \pi^{yx} & \Pi + \pi^{yy} & \pi^{yz} \\ W^z & \pi^{zx} & \pi^{yz} & \Pi + \pi^{zz} \end{pmatrix}$$

$$N_J^{\mu} = N_{J0}^{\mu} + \delta N_J^{\mu} \quad (J = 1, 2, ..., N)$$

$$= \begin{pmatrix} n_{J0} \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} \delta n_J \\ V_J^x \\ V_J^z \\ V_J^z \end{pmatrix}$$
Energy density deviation:  $\delta e$ 
Bulk pressure:  $\Pi$ 

#### 2+N equilibrium quantities

Energy density:  $e_0$ 

Hydrostatic pressure:  $P_0$ 

*J*-th charge density:  $n_{J0}$ 

#### 10+4N dissipative currents

Energy density deviation:  $\delta e$ 

Bulk pressure: II

Energy current:  $W^{\mu}$ 

Shear stress tensor:  $\pi^{\mu\nu}$ 

*J*-th charge density dev.:  $\delta n_J$ 

*J*-th charge current:  $V^{\mu}_{I}$ 

# Viscosity and diffusion

Meaning of "dissipation" in fluids

viscosity

Off-equilibrium processes at linear order



deformation



Bulk viscosity = response to expansion



Energy dissipation= response tothermal gradient



Charge diffusion = response to chemical gradients

dissipation/diffusion

- Cross terms among thermodynamic forces are present (discussed later)
- ▶ 2<sup>nd</sup> order corrections are required for hydrodynamic stability and causality

W. Israel, J. M. Stewart, Annals Phys 118, 341 (1979) W.A. Hiscock, L. Lindblom, Phys. Rev. D 31, 725 (1985)

## Dissipative hydrodynamics

Relativistic hydrodynamic equations

Conservation laws 
$$\partial_{\mu}T^{\mu\nu}=0$$
  $\partial_{\mu}N_{B}^{\mu}=0$ 

$$D = u^{\mu} \partial_{\mu}$$
$$\nabla^{\mu} = \partial^{\mu} - u^{\mu} D_{\mathbf{a}}$$

The law of increasing entropy -> Constitutive equations

$$\Pi = -\zeta \nabla_{\mu} u^{\mu} - \zeta_{\Pi \delta e} D \frac{1}{T} + \zeta_{\Pi \delta n_{B}} D \frac{\mu_{B}}{T} - \tau_{\Pi} D \Pi + \chi_{\Pi \Pi}^{a} \Pi D \frac{\mu_{B}}{T} + \chi_{\Pi \Pi}^{b} \Pi D \frac{1}{T} + \chi_{\Pi \Pi}^{c} \Pi \nabla_{\mu} u^{\mu}$$

$$+ \chi_{\Pi V}^{a} V_{\mu} \nabla^{\mu} \frac{\mu_{K}}{T} + \chi_{\Pi V}^{b} V_{\mu} \nabla^{\mu} \frac{1}{T} + \chi_{\Pi V}^{c} V_{\mu} D u^{\mu} + \chi_{\Pi V}^{d} \nabla^{\mu} V_{\mu} + \chi_{\Pi \pi} \pi_{\mu \nu} \nabla^{\langle \mu} u^{\nu \rangle}$$

$$V^{\mu} = \kappa_{V} \nabla^{\mu} \frac{\mu_{B}}{T} - \kappa_{VW} \left( \frac{1}{T} D u^{\mu} + \nabla^{\mu} \frac{1}{T} \right) - \tau_{V} \Delta^{\mu\nu} D V_{\nu} + \chi^{a}_{VV} V_{K}^{\mu} D \frac{\mu_{B}}{T} + \chi^{b}_{VV} V^{\mu} D \frac{1}{T}$$

$$+ \chi^{c}_{VJV} V^{\mu} \nabla_{\nu} u^{\nu} + \chi^{d}_{VV} V_{K}^{\nu} \nabla_{\nu} u^{\mu} + \chi^{e}_{VV} V^{\nu} \nabla^{\mu} u_{\nu} + \chi^{a}_{V\pi} \pi^{\mu\nu} \nabla_{\nu} \frac{\mu_{B}}{T} + \chi^{b}_{V\pi} \pi^{\mu\nu} \nabla_{\nu} \frac{1}{T}$$

$$+ \chi^{c}_{V\pi} \pi^{\mu\nu} D u_{\nu} + \chi^{d}_{V\pi} \Delta^{\mu\nu} \nabla^{\rho} \pi_{\nu\rho} + \chi^{a}_{V\Pi} \Pi \nabla^{\mu} \frac{\mu_{B}}{T} + \chi^{b}_{V\Pi} \Pi \nabla^{\mu} \frac{1}{T} + \chi^{c}_{V\Pi} \Pi D u^{\mu} + \chi^{d}_{V\Pi} \nabla^{\mu} \Pi$$

$$\pi^{\mu\nu} = 2\eta \nabla^{\langle \mu} u^{\nu \rangle} - \tau_{\pi} D \pi^{\langle \mu\nu \rangle} + \chi_{\pi\Pi} \Pi \nabla^{\langle \mu} u^{\nu \rangle} + \chi_{\pi\pi}^{a} \pi^{\mu\nu} D \frac{\mu_{B}}{T} + \chi_{\pi\pi}^{b} \pi^{\mu\nu} D \frac{1}{T} + \chi_{\pi\pi}^{c} \pi^{\mu\nu} \nabla_{\rho} u^{\rho} + \chi_{\pi\pi}^{d} \pi^{\rho \langle \mu} \nabla_{\rho} u^{\nu \rangle} + \chi_{\pi V}^{aJ} V^{\langle \mu} \nabla^{\nu \rangle} \frac{\mu_{B}}{T} + \chi_{\pi V}^{b} V^{\langle \mu} \nabla^{\nu \rangle} \frac{1}{T} + \chi_{\pi V}^{c} V^{\langle \mu} D u^{\nu \rangle} + \chi_{\pi V}^{d} \nabla^{\langle \mu} V^{\nu \rangle}$$

## Numerical analyses

Baryon stopping

Plot: BRAHMS, PRL 93, 102301 (2004)



Baryon stopping can quantify kinetic energy available for QGP production

mean rapidity loss  $\langle \delta y \rangle$ 

- = rapidity of projectile nuclei  $y_b$
- mean rapidity of net baryon <y>

- What we do:
  - Estimate dissipative hydro evolution of net baryon rapidity distribution with viscosities and baryon diffusion

(1+1)-D expansion is considered because dependence on transverse geometry is small



## Simulation Setup

■ Equation of state: Lattice QCD with Taylor expansion

$$\frac{P(T,\mu_B)}{T^4} = \frac{P(T,0)}{T^4} + \frac{\chi_B^{(2)}(T,0)}{2} \left(\frac{\mu_B}{T}\right)^2 + \mathcal{O}\left(\frac{\mu_B}{T}\right)^4$$

P(T,0): Equation of state at vanishing  $\mu_{\rm B}$ 

 $\chi_B^{(2)}(T,0):$  2<sup>nd</sup> order baryon fluctuation

S. Borsanyi *et al.*, JHEP 1011, 077

S. Borsanyi et al., JHEP 1201, 138

#### ■ Transport coefficients: AdS/CFT + phenomenology

Shear viscosity:  $\eta = s/4\pi$ 

Bulk viscosity:  $\zeta = 5(\frac{1}{3} - c_s^2)\eta$ 

Baryon dissipation:  $\kappa_V = \frac{c_V}{2\pi} (\frac{\partial \mu_B}{\partial n_B})_T^{-1}$ 

P. Kovtun et al., PRL 94, 111601

A. Hosoya et al., AP 154, 229

M. Natsuume and T. Okamura, PRD 77, 066014

■ Initial conditions: Color glass theory

Energy density: MC-KLN

Net baryon density: Valence quark dist.

H. J. Drescher and Y. Nara, PRC 75, 034905; 76, 041903 Y. Mehtar-Tani and G. Wolschin, PRL 102, 182301; PRC 80, 054905

Results

Net baryon rapidity distribution at RHIC and LHC



- Net baryon is carried to forward rapidity by convection
- Viscosities slow the longitudinal expansion
- Net baryon diffuses into mid-rapidity

Results

Net baryon rapidity distribution at SPS and RHIC



- Results can be comparable to data (not fine-tuned yet)
- Dissipative effect could be larger for lower energies
   Note: CGC-based initial conditions (not best suitable at low energies)

#### Mean rapidity loss at RHIC

Mean rapidity loss  $\langle \delta y \rangle = y_p - \langle y \rangle$ 

$$\langle y \rangle = \int_0^{y_p} y \frac{dN_{B-\bar{B}}(y)}{dy} dy \bigg/ \int_0^{y_p} \frac{dN_{B-\bar{B}}(y)}{dy} dy$$

Initial loss (200GeV):  $\langle \delta y \rangle = 2.67$ 

Ideal hydro:  $\langle \delta y \rangle = 2.09$ 

Viscous hydro:  $\langle \delta y \rangle = 2.16$ 

Dissipative hydro:  $\langle \delta y \rangle = 2.26$ 





 The collision becomes effectively more transparent by hydrodynamic evolution



More kinetic energy is available for QGP production

# Cross-coupling effects (1)

Linear response theory and cross terms

#### **Bulk pressure** (w/o charges)

$$\Pi = -\zeta_{\Pi\Pi} \frac{1}{T} \nabla_{\mu} u^{\mu} - \zeta_{\Pi\delta e} D \frac{1}{T} = -\underbrace{\left(\frac{\zeta_{\Pi\Pi}}{T} + \frac{\zeta_{\Pi\delta e}}{T} c_{s}^{2}\right)}_{\textit{Response to expansion}} \nabla_{\mu} u^{\mu}$$

- Response to expansion itself can be as large as shear viscosity
- $\triangleright$  Cancelled by the cross term except for crossover where  $c_s^2 \sim 0$ 
  - A reason for general smallness of bulk viscosity

#### **Baryon dissipation current**

$$V^{\mu} = \kappa_V \nabla^{\mu} \frac{\mu_B}{T} - \kappa_{VW} \left( \nabla^{\mu} \frac{1}{T} + \frac{1}{T} D u^{\mu} \right)$$

Baryon dissipation can be induced by thermal gradient + acceleration

■ Thermo-diffusion effect (a.k.a. Soret effect)



- Baryon dissipation can be induced by thermal gradients (and acceleration)

$$V^{\mu} = \kappa_V \nabla^{\mu} \frac{\mu_B}{T} - \kappa_{VW} \left( \nabla^{\mu} \frac{1}{T} + \frac{1}{T} D u^{\mu} \right)$$

at the linear order

- Cross coefficients can be negative if the coefficient matrix is positive definite



 The effect of cross coupling is likely to be small in high-energy collisions

because of the matter-antimatter symmetry

$$V^{\mu}(\mu_B) = -V^{\mu}(-\mu_B)$$
 which leads to  $\kappa_{VW}(\mu_B=0)=0$ 

# Cross-coupling effects (2)

■ Mixing of the currents at the 2<sup>nd</sup> order

#### **System dependence**

Hydrodynamic theory considers:

$$\pi^{\mu\nu} \sim \Pi \sim V^{\mu}$$



In high-energy nuclear collisions:

$$\pi^{\mu\nu} > \Pi > V^{\mu}$$



- Bulk-shear coupling term in bulk pressure Baryon-shear and baryon-bulk coupling terms in baryon dissipation have more impact than other 2<sup>nd</sup> order terms (numerically confirmed)
- Applicability of the expansion is dependent on the 2<sup>nd</sup> order transport coefficients

## Summary so far

- Dissipative hydrodynamic model is developed and simulated in (1+1)D at finite baryon density
  - Net baryon distribution is widened in hydrodynamic evolution
    - Transparency of the collision is effectively enhanced
    - More kinetic energy may be available at QGP (and jet) production in early stages
  - The results can be sensitive to baryon diffusion coefficient
    - Ambiguities remain in initial condition, but the distribution has important information
  - Hydrodynamic results for baryon stopping are comparable to the experimental data at lower energies

Next slide:

## 3. Towards full analyses of BES

B. Schenke and AM

To collaborate with G. Denicol, C. Shen, S. Jeon and C. Gale

### Initial conditions

- 3D Monte-Carlo Glauber model
  - Net baryon distribution

Valence quark PDF for the rapidity distribution before collisions



A collision modifies the distribution via the kernel

S. Jeon and J. Kapusta, PRC 56, 468

$$Q(y - y_P, y_P - y_T, y - y_P) = \lambda \frac{\cosh(y - y_P)}{\sinh(y_P - y_T)} + (1 - \lambda)\delta(y - y_P)$$



Keep sampling for all the parton-parton collisions

Entropy distribution
 Entropy is deposited between the last collision pairs

A simple and straight-forward extension of 2D MC Glauber model



## Equation of state

Lattice QCD (Taylor expansion) + Hadron resonance gas

$$\frac{P}{T^4} = \frac{1}{2} \left[ 1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T)}{T^4}$$
$$+ \frac{1}{2} \left[ 1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s)}{T_s^4}$$

#### where

$$T_c = 0.166 - c(0.139\mu_B^2 + 0.053\mu_B^4)$$
$$T_s = T + c[T_c(0) - T_c(\mu_B)]$$



EoS of kinetic theory must match EoS for hydrodynamics at freeze-out (or energy-momentum/net baryon does not conserve)

Particle spectrum 
$$E_i \frac{dN_i}{d^3p} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p_i^{\mu} d\sigma_{\mu} f_i \qquad \text{Hydrodynamics}$$

## Hydrodynamic evolution

■ 3+1 D event-by-event analyses (work in progress)



## 4. Summary and outlook

## Summary and outlook

- (3+1)-D event-by-event hydrodynamic model at finite baryon density in preparation
  - Initial condition: 3D Monte-Carlo Glauber model
  - Equation of state: Lattice QCD with Taylor expansion method+ Hadron resonance gas
  - Viscosity: shear viscosity + bulk viscosity
  - Baryon diffusion: see next talk by Chun
- Thank you for listening!